Adaptive Modularity Maximization via Edge Weighting Scheme

نویسندگان

  • Xiaoyan Lu
  • Konstantin Kuzmin
  • Mingming Chen
  • Boleslaw K. Szymanski
چکیده

Modularity maximization is one of the state-of-the-art methods for community detection that has gained popularity in the last decade. Yet it suffers from the resolution limit problem by preferring under certain conditions large communities over small ones. To solve this problem, we propose to expand the meaning of the edges that are currently used to indicate propensity of nodes for sharing the same community. In our approach this is the role of edges with positive weights while edges with negative weights indicate aversion for putting their end-nodes into one community. We also present a novel regression model which assigns weights to the edges of a graph according to their local topological features to enhance the accuracy of modularity maximization algorithms. We construct artificial graphs based on the parameters sampled from a given unweighted network and train the regression model on ground truth communities of these artificial graphs in a supervised fashion. The extraction of local topological edge features can be done in linear time, making this process efficient. Experimental results on real and synthetic networks show that the state-of-theart community detection algorithms improve their performance significantly by finding communities in the weighted graphs produced by our model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tolerating the community detection resolution limit with edge weighting.

Communities of vertices within a giant network such as the World Wide Web are likely to be vastly smaller than the network itself. However, Fortunato and Barthélemy have proved that modularity maximization algorithms for community detection may fail to resolve communities with fewer than √L/2 edges, where L is the number of edges in the entire network. This resolution limit leads modularity max...

متن کامل

Adaptive predictor based on maximally flat halfband filter in lifting scheme

For the complex short time-varying signals, a highorder predictor does not always yield good performance. For this, we investigate the use of a short-order adaptive predictor. Since the maximally flat filters are the optimal predictors for polynomial signal prediction, the adaptation is based on the combination of a set of maximally flat filters. For compression efficiency, the dynamic ranges o...

متن کامل

Bad Communities with High Modularity

In this paper we discuss some problematic aspects of Newman’s modularity function QN . Given a graph G, the modularity of G can be written as QN = Qf −Q0, where Qf is the intracluster edge fraction of G and Q0 is the expected intracluster edge fraction of the null model, i.e., a randomly connected graph with same expected degree distribution as G. It follows that the maximization of QN must acc...

متن کامل

Community Detection in Temporal Multilayer Networks, with an Application to Correlation Networks

Networks are a convenient way to represent complex systems of interacting entities. Many networks contain “communities” of nodes that are more densely connected to each other than to nodes in the rest of the network. In this paper, we investigate the detection of communities in temporal networks represented as multilayer networks. As a focal example, we study time-dependent financial-asset corr...

متن کامل

Community detection in temporal multilayer networks, and its application to correlation networks

Networks are a convenient way to represent complex systems of interacting entities. Many networks contain “communities” of nodes that are more densely connected to each other than to nodes in the rest of the network. In this paper, we investigate the detection of communities in temporal networks represented as multilayer networks. As a focal example, we study time-dependent financialasset corre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Sci.

دوره 424  شماره 

صفحات  -

تاریخ انتشار 2018